{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE ScopedTypeVariables #-}
module Numeric.Rounded.Hardware.Internal.Show where
import Data.Bifunctor (first)
import Data.Bits
import Data.Char (intToDigit)
import Numeric.Floating.IEEE.Internal (countTrailingZerosInteger)
import Numeric.Rounded.Hardware.Internal.Rounding
binaryFloatToDecimalDigitsRn :: forall a. RealFloat a
=> RoundingMode
-> Int
-> a
-> ([Int], Int)
binaryFloatToDecimalDigitsRn :: RoundingMode -> Int -> a -> ([Int], Int)
binaryFloatToDecimalDigitsRn _rm :: RoundingMode
_rm _prec :: Int
_prec 0 = ([], 0)
binaryFloatToDecimalDigitsRn _rm :: RoundingMode
_rm _prec :: Int
_prec x :: a
x | a -> Integer
forall a. RealFloat a => a -> Integer
floatRadix a
x Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
/= 2 = [Char] -> ([Int], Int)
forall a. HasCallStack => [Char] -> a
error "radix must be 2"
binaryFloatToDecimalDigitsRn rm :: RoundingMode
rm prec :: Int
prec x :: a
x =
let m :: Integer
n, d, e0 :: Int
(m :: Integer
m,n :: Int
n) = a -> (Integer, Int)
forall a. RealFloat a => a -> (Integer, Int)
decodeFloat a
x
d :: Int
d = a -> Int
forall a. RealFloat a => a -> Int
floatDigits a
x
e0 :: Int
e0 = a -> Int
forall a b. (RealFrac a, Integral b) => a -> b
floor (Int -> a
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Int
d Int -> Int -> Int
forall a. Num a => a -> a -> a
- 1 Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
n) a -> a -> a
forall a. Num a => a -> a -> a
* a -> a -> a
forall a. Floating a => a -> a -> a
logBase 10 2 :: a) Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
prec
s, t :: Integer
(s :: Integer
s,t :: Integer
t) | Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< 0, 0 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
e0 = (Integer
m, 2Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^(-Int
n) Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
* 10Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^Int
e0)
| 0 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
e0 = (Integer
m Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
* 2Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^Int
n, 10Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^Int
e0)
| Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< 0 = (Integer
m Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
* 10Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^(-Int
e0), 2Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^(-Int
n))
| Bool
otherwise = (Integer
m Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
* 2Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^Int
n Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
* 10Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^(-Int
e0), 1)
q, r :: Integer
(q :: Integer
q,r :: Integer
r) = Integer
s Integer -> Integer -> (Integer, Integer)
forall a. Integral a => a -> a -> (a, a)
`quotRem` Integer
t
q', r', t' :: Integer
e' :: Int
(q' :: Integer
q',r' :: Integer
r',t' :: Integer
t',e' :: Int
e') | 10Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^(Int
precInt -> Int -> Int
forall a. Num a => a -> a -> a
+1) Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
<= Integer
q = case Integer
q Integer -> Integer -> (Integer, Integer)
forall a. Integral a => a -> a -> (a, a)
`quotRem` 10 of
(q'' :: Integer
q'',r'' :: Integer
r'') -> (Integer
q'', Integer
r''Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
*Integer
tInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
+Integer
r, 10Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
*Integer
t, Int
e0Int -> Int -> Int
forall a. Num a => a -> a -> a
+1)
| Bool
otherwise = (Integer
q,Integer
r,Integer
t,Int
e0)
in if Integer
r' Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== 0
then
Int -> Integer -> ([Int], Int)
loop0 Int
e' Integer
q'
else
case RoundingMode
rm of
TowardNegInf -> Int -> Integer -> ([Int], Int)
loop0 Int
e' Integer
q'
TowardZero -> Int -> Integer -> ([Int], Int)
loop0 Int
e' Integer
q'
TowardInf -> Int -> Integer -> ([Int], Int)
loop0 Int
e' (Integer
q' Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
+ 1)
ToNearest -> case Integer -> Integer -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (2 Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
* Integer
r') Integer
t' of
LT -> Int -> Integer -> ([Int], Int)
loop0 Int
e' Integer
q'
EQ | Integer -> Bool
forall a. Integral a => a -> Bool
even Integer
q' -> Int -> Integer -> ([Int], Int)
loop0 Int
e' Integer
q'
| Bool
otherwise -> Int -> Integer -> ([Int], Int)
loop0 Int
e' (Integer
q' Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
+ 1)
GT -> Int -> Integer -> ([Int], Int)
loop0 Int
e' (Integer
q' Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
+ 1)
where
loop0 :: Int -> Integer -> ([Int], Int)
loop0 :: Int -> Integer -> ([Int], Int)
loop0 !Int
_ 0 = ([], 0)
loop0 !Int
e a :: Integer
a = case Integer
a Integer -> Integer -> (Integer, Integer)
forall a. Integral a => a -> a -> (a, a)
`quotRem` 10 of
(q :: Integer
q,0) -> Int -> Integer -> ([Int], Int)
loop0 (Int
eInt -> Int -> Int
forall a. Num a => a -> a -> a
+1) Integer
q
(q :: Integer
q,r :: Integer
r) -> Int -> [Int] -> Integer -> ([Int], Int)
loop (Int
eInt -> Int -> Int
forall a. Num a => a -> a -> a
+1) [Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
r] Integer
q
loop :: Int -> [Int] -> Integer -> ([Int], Int)
loop :: Int -> [Int] -> Integer -> ([Int], Int)
loop !Int
e acc :: [Int]
acc 0 = ([Int]
acc, Int
e)
loop !Int
e acc :: [Int]
acc a :: Integer
a = case Integer
a Integer -> Integer -> (Integer, Integer)
forall a. Integral a => a -> a -> (a, a)
`quotRem` 10 of
(q :: Integer
q,r :: Integer
r) -> Int -> [Int] -> Integer -> ([Int], Int)
loop (Int
eInt -> Int -> Int
forall a. Num a => a -> a -> a
+1) (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
r Int -> [Int] -> [Int]
forall a. a -> [a] -> [a]
: [Int]
acc) Integer
q
{-# SPECIALIZE binaryFloatToDecimalDigitsRn :: RoundingMode -> Int -> Double -> ([Int], Int) #-}
binaryFloatToFixedDecimalDigitsRn :: forall a. RealFloat a
=> RoundingMode
-> Int
-> a
-> [Int]
binaryFloatToFixedDecimalDigitsRn :: RoundingMode -> Int -> a -> [Int]
binaryFloatToFixedDecimalDigitsRn _rm :: RoundingMode
_rm _prec :: Int
_prec x :: a
x | a -> Integer
forall a. RealFloat a => a -> Integer
floatRadix a
x Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
/= 2 = [Char] -> [Int]
forall a. HasCallStack => [Char] -> a
error "radix must be 2"
binaryFloatToFixedDecimalDigitsRn rm :: RoundingMode
rm prec :: Int
prec x :: a
x =
let m, s, t, q, r :: Integer
e :: Int
(m :: Integer
m,e :: Int
e) = a -> (Integer, Int)
forall a. RealFloat a => a -> (Integer, Int)
decodeFloat a
x
(s :: Integer
s,t :: Integer
t) | Int
prec Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= 0, Int
e Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
prec Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= 0 = (Integer
m Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
* 2Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^(Int
eInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
prec) Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
* 5Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^Int
prec, 1)
| Int
prec Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= 0 = (Integer
m Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
* 5Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^Int
prec, 2Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^(-Int
eInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
prec))
| Int
e Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
prec Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= 0 = (Integer
m Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
* 2Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^(Int
eInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
prec), 5Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^(-Int
prec))
| Bool
otherwise = (Integer
m, 2Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^(-Int
eInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
prec) Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
* 5Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^(-Int
prec))
(q :: Integer
q,r :: Integer
r) = Integer
s Integer -> Integer -> (Integer, Integer)
forall a. Integral a => a -> a -> (a, a)
`quotRem` Integer
t
in if Integer
r Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== 0
then
[Int] -> Integer -> [Int]
loop [] Integer
q
else
case RoundingMode
rm of
TowardNegInf -> [Int] -> Integer -> [Int]
loop [] Integer
q
TowardZero -> [Int] -> Integer -> [Int]
loop [] Integer
q
TowardInf -> [Int] -> Integer -> [Int]
loop [] (Integer
q Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
+ 1)
ToNearest -> case Integer -> Integer -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (2 Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
* Integer
r) Integer
t of
LT -> [Int] -> Integer -> [Int]
loop [] Integer
q
EQ | Integer -> Bool
forall a. Integral a => a -> Bool
even Integer
q -> [Int] -> Integer -> [Int]
loop [] Integer
q
| Bool
otherwise -> [Int] -> Integer -> [Int]
loop [] (Integer
q Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
+ 1)
GT -> [Int] -> Integer -> [Int]
loop [] (Integer
q Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
+ 1)
where
loop :: [Int] -> Integer -> [Int]
loop :: [Int] -> Integer -> [Int]
loop acc :: [Int]
acc 0 = [Int]
acc
loop acc :: [Int]
acc a :: Integer
a = case Integer
a Integer -> Integer -> (Integer, Integer)
forall a. Integral a => a -> a -> (a, a)
`quotRem` 10 of
(q :: Integer
q,r :: Integer
r) -> [Int] -> Integer -> [Int]
loop (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
r Int -> [Int] -> [Int]
forall a. a -> [a] -> [a]
: [Int]
acc) Integer
q
{-# SPECIALIZE binaryFloatToFixedDecimalDigitsRn :: RoundingMode -> Int -> Double -> [Int] #-}
binaryFloatToDecimalDigits :: RealFloat a
=> a
-> ([Int], Int)
binaryFloatToDecimalDigits :: a -> ([Int], Int)
binaryFloatToDecimalDigits 0 = ([], 0)
binaryFloatToDecimalDigits x :: a
x | a -> Integer
forall a. RealFloat a => a -> Integer
floatRadix a
x Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
/= 2 = [Char] -> ([Int], Int)
forall a. HasCallStack => [Char] -> a
error "radix must be 2"
binaryFloatToDecimalDigits x :: a
x =
let m, m', m'' :: Integer
n, z, n', e :: Int
(m :: Integer
m,n :: Int
n) = a -> (Integer, Int)
forall a. RealFloat a => a -> (Integer, Int)
decodeFloat a
x
z :: Int
z = Integer -> Int
countTrailingZerosInteger Integer
m
(m' :: Integer
m',n' :: Int
n') = (Integer
m Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftR` Int
z, Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
z)
(m'' :: Integer
m'',e :: Int
e) | Int
n' Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< 0 = (Integer
m' Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
* 5Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^(-Int
n'), Int
n')
| Bool
otherwise = (Integer
m' Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
* 2Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^Int
n', 0)
in Int -> Integer -> ([Int], Int)
loop0 Int
e Integer
m''
where
loop0 :: Int -> Integer -> ([Int], Int)
loop0 :: Int -> Integer -> ([Int], Int)
loop0 !Int
_ 0 = ([0], 0)
loop0 !Int
e a :: Integer
a = case Integer
a Integer -> Integer -> (Integer, Integer)
forall a. Integral a => a -> a -> (a, a)
`quotRem` 10 of
(q :: Integer
q,0) -> Int -> Integer -> ([Int], Int)
loop0 (Int
eInt -> Int -> Int
forall a. Num a => a -> a -> a
+1) Integer
q
(q :: Integer
q,r :: Integer
r) -> Int -> [Int] -> Integer -> ([Int], Int)
loop (Int
eInt -> Int -> Int
forall a. Num a => a -> a -> a
+1) [Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
r] Integer
q
loop :: Int -> [Int] -> Integer -> ([Int], Int)
loop :: Int -> [Int] -> Integer -> ([Int], Int)
loop !Int
e acc :: [Int]
acc 0 = ([Int]
acc, Int
e)
loop !Int
e acc :: [Int]
acc n :: Integer
n = case Integer
n Integer -> Integer -> (Integer, Integer)
forall a. Integral a => a -> a -> (a, a)
`quotRem` 10 of
(q :: Integer
q,r :: Integer
r) -> Int -> [Int] -> Integer -> ([Int], Int)
loop (Int
eInt -> Int -> Int
forall a. Num a => a -> a -> a
+1) (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
r Int -> [Int] -> [Int]
forall a. a -> [a] -> [a]
: [Int]
acc) Integer
q
{-# SPECIALIZE binaryFloatToDecimalDigits :: Double -> ([Int], Int) #-}
showEFloatRn :: RealFloat a => RoundingMode -> Maybe Int -> a -> ShowS
showEFloatRn :: RoundingMode -> Maybe Int -> a -> ShowS
showEFloatRn r :: RoundingMode
r mprec :: Maybe Int
mprec x :: a
x
| a -> Bool
forall a. RealFloat a => a -> Bool
isNaN a
x = [Char] -> ShowS
showString "NaN"
| a
x a -> a -> Bool
forall a. Ord a => a -> a -> Bool
< 0 Bool -> Bool -> Bool
|| a -> Bool
forall a. RealFloat a => a -> Bool
isNegativeZero a
x = Char -> ShowS
showChar '-' ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. RoundingMode -> Maybe Int -> a -> ShowS
forall a. RealFloat a => RoundingMode -> Maybe Int -> a -> ShowS
showEFloatRn (RoundingMode -> RoundingMode
oppositeRoundingMode RoundingMode
r) Maybe Int
mprec (-a
x)
| a -> Bool
forall a. RealFloat a => a -> Bool
isInfinite a
x = [Char] -> ShowS
showString "Infinity"
| Bool
otherwise = let (xs :: [Int]
xs,e :: Int
e) = case Maybe Int
mprec of
Nothing -> a -> ([Int], Int)
forall a. RealFloat a => a -> ([Int], Int)
binaryFloatToDecimalDigits a
x
Just prec :: Int
prec -> let !prec' :: Int
prec' = Int -> Int -> Int
forall a. Ord a => a -> a -> a
max Int
prec 0
in ([Int] -> [Int]) -> ([Int], Int) -> ([Int], Int)
forall (p :: * -> * -> *) a b c.
Bifunctor p =>
(a -> b) -> p a c -> p b c
first (Int -> [Int] -> [Int]
padRight0 (Int
prec' Int -> Int -> Int
forall a. Num a => a -> a -> a
+ 1)) (([Int], Int) -> ([Int], Int)) -> ([Int], Int) -> ([Int], Int)
forall a b. (a -> b) -> a -> b
$ RoundingMode -> Int -> a -> ([Int], Int)
forall a. RealFloat a => RoundingMode -> Int -> a -> ([Int], Int)
binaryFloatToDecimalDigitsRn RoundingMode
r Int
prec' a
x
e' :: Int
e' | (Int -> Bool) -> [Int] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all (Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== 0) [Int]
xs = 0
| Bool
otherwise = Int
e Int -> Int -> Int
forall a. Num a => a -> a -> a
- 1
in case [Int]
xs of
[] -> [Char] -> ShowS
showString "0.0e0"
[0] -> [Char] -> ShowS
showString "0e0"
[d :: Int
d] -> case Maybe Int
mprec of
Nothing -> [Char] -> ShowS
showString ([Char] -> ShowS) -> [Char] -> ShowS
forall a b. (a -> b) -> a -> b
$ Int -> Char
intToDigit Int
d Char -> ShowS
forall a. a -> [a] -> [a]
: '.' Char -> ShowS
forall a. a -> [a] -> [a]
: '0' Char -> ShowS
forall a. a -> [a] -> [a]
: 'e' Char -> ShowS
forall a. a -> [a] -> [a]
: Int -> [Char]
forall a. Show a => a -> [Char]
show Int
e'
_ -> [Char] -> ShowS
showString ([Char] -> ShowS) -> [Char] -> ShowS
forall a b. (a -> b) -> a -> b
$ Int -> Char
intToDigit Int
d Char -> ShowS
forall a. a -> [a] -> [a]
: 'e' Char -> ShowS
forall a. a -> [a] -> [a]
: Int -> [Char]
forall a. Show a => a -> [Char]
show Int
e'
(d :: Int
d:ds :: [Int]
ds) -> [Char] -> ShowS
showString ([Char] -> ShowS) -> [Char] -> ShowS
forall a b. (a -> b) -> a -> b
$ (Int -> Char
intToDigit Int
d Char -> ShowS
forall a. a -> [a] -> [a]
: '.' Char -> ShowS
forall a. a -> [a] -> [a]
: (Int -> Char) -> [Int] -> [Char]
forall a b. (a -> b) -> [a] -> [b]
map Int -> Char
intToDigit [Int]
ds) [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ ('e' Char -> ShowS
forall a. a -> [a] -> [a]
: Int -> [Char]
forall a. Show a => a -> [Char]
show Int
e')
where
padRight0 :: Int -> [Int] -> [Int]
padRight0 :: Int -> [Int] -> [Int]
padRight0 0 ys :: [Int]
ys = [Int]
ys
padRight0 !Int
n [] = Int -> Int -> [Int]
forall a. Int -> a -> [a]
replicate Int
n 0
padRight0 !Int
n (y :: Int
y:ys :: [Int]
ys) = Int
y Int -> [Int] -> [Int]
forall a. a -> [a] -> [a]
: Int -> [Int] -> [Int]
padRight0 (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- 1) [Int]
ys
{-# SPECIALIZE showEFloatRn :: RoundingMode -> Maybe Int -> Double -> ShowS #-}
showFFloatRn :: RealFloat a => RoundingMode -> Maybe Int -> a -> ShowS
showFFloatRn :: RoundingMode -> Maybe Int -> a -> ShowS
showFFloatRn r :: RoundingMode
r mprec :: Maybe Int
mprec x :: a
x
| a -> Bool
forall a. RealFloat a => a -> Bool
isNaN a
x = [Char] -> ShowS
showString "NaN"
| a
x a -> a -> Bool
forall a. Ord a => a -> a -> Bool
< 0 Bool -> Bool -> Bool
|| a -> Bool
forall a. RealFloat a => a -> Bool
isNegativeZero a
x = Char -> ShowS
showChar '-' ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. RoundingMode -> Maybe Int -> a -> ShowS
forall a. RealFloat a => RoundingMode -> Maybe Int -> a -> ShowS
showFFloatRn (RoundingMode -> RoundingMode
oppositeRoundingMode RoundingMode
r) Maybe Int
mprec (-a
x)
| a -> Bool
forall a. RealFloat a => a -> Bool
isInfinite a
x = [Char] -> ShowS
showString "Infinity"
| Bool
otherwise = case Maybe Int
mprec of
Nothing -> let (xs :: [Int]
xs,e :: Int
e) = a -> ([Int], Int)
forall a. RealFloat a => a -> ([Int], Int)
binaryFloatToDecimalDigits a
x
l :: Int
l = [Int] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Int]
xs
in if Int
e Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
l then
if [Int] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Int]
xs then
[Char] -> ShowS
showString "0.0"
else
[Char] -> ShowS
showString ((Int -> Char) -> [Int] -> [Char]
forall a b. (a -> b) -> [a] -> [b]
map Int -> Char
intToDigit [Int]
xs [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ Int -> Char -> [Char]
forall a. Int -> a -> [a]
replicate (Int
e Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
l) '0' [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ ".0")
else
if Int
e Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> 0 then
if Int
l Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
e then
[Char] -> ShowS
showString ((Int -> Char) -> [Int] -> [Char]
forall a b. (a -> b) -> [a] -> [b]
map Int -> Char
intToDigit [Int]
xs [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ ".0")
else
let (ys :: [Int]
ys,zs :: [Int]
zs) = Int -> [Int] -> ([Int], [Int])
forall a. Int -> [a] -> ([a], [a])
splitAt Int
e [Int]
xs
ys' :: [Int]
ys' = if [Int] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Int]
ys then [0] else [Int]
ys
in [Char] -> ShowS
showString ((Int -> Char) -> [Int] -> [Char]
forall a b. (a -> b) -> [a] -> [b]
map Int -> Char
intToDigit [Int]
ys' [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ "." [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ (Int -> Char) -> [Int] -> [Char]
forall a b. (a -> b) -> [a] -> [b]
map Int -> Char
intToDigit [Int]
zs)
else
[Char] -> ShowS
showString ("0." [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ Int -> Char -> [Char]
forall a. Int -> a -> [a]
replicate (-Int
e) '0' [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ (Int -> Char) -> [Int] -> [Char]
forall a b. (a -> b) -> [a] -> [b]
map Int -> Char
intToDigit [Int]
xs)
Just prec :: Int
prec -> let prec' :: Int
prec' = Int -> Int -> Int
forall a. Ord a => a -> a -> a
max Int
prec 0
xs :: [Int]
xs = RoundingMode -> Int -> a -> [Int]
forall a. RealFloat a => RoundingMode -> Int -> a -> [Int]
binaryFloatToFixedDecimalDigitsRn RoundingMode
r Int
prec' a
x
l :: Int
l = [Int] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Int]
xs
in if Int
prec' Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== 0 then
if [Int] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Int]
xs then
[Char] -> ShowS
showString "0"
else
[Char] -> ShowS
showString ([Char] -> ShowS) -> [Char] -> ShowS
forall a b. (a -> b) -> a -> b
$ (Int -> Char) -> [Int] -> [Char]
forall a b. (a -> b) -> [a] -> [b]
map Int -> Char
intToDigit [Int]
xs
else
if Int
l Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
prec' then
[Char] -> ShowS
showString ([Char] -> ShowS) -> [Char] -> ShowS
forall a b. (a -> b) -> a -> b
$ "0." [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ Int -> Char -> [Char]
forall a. Int -> a -> [a]
replicate (Int
prec' Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
l) '0' [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ (Int -> Char) -> [Int] -> [Char]
forall a b. (a -> b) -> [a] -> [b]
map Int -> Char
intToDigit [Int]
xs
else
let (ys :: [Int]
ys,zs :: [Int]
zs) = Int -> [Int] -> ([Int], [Int])
forall a. Int -> [a] -> ([a], [a])
splitAt (Int
l Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
prec') [Int]
xs
ys' :: [Int]
ys' = if [Int] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Int]
ys then [0] else [Int]
ys
in [Char] -> ShowS
showString ([Char] -> ShowS) -> [Char] -> ShowS
forall a b. (a -> b) -> a -> b
$ (Int -> Char) -> [Int] -> [Char]
forall a b. (a -> b) -> [a] -> [b]
map Int -> Char
intToDigit [Int]
ys' [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ "." [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ (Int -> Char) -> [Int] -> [Char]
forall a b. (a -> b) -> [a] -> [b]
map Int -> Char
intToDigit [Int]
zs
{-# SPECIALIZE showFFloatRn :: RoundingMode -> Maybe Int -> Double -> ShowS #-}
showGFloatRn :: RealFloat a => RoundingMode -> Maybe Int -> a -> ShowS
showGFloatRn :: RoundingMode -> Maybe Int -> a -> ShowS
showGFloatRn r :: RoundingMode
r mprec :: Maybe Int
mprec x :: a
x | a
x a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== 0 Bool -> Bool -> Bool
|| (0.1 a -> a -> Bool
forall a. Ord a => a -> a -> Bool
<= a -> a
forall a. Num a => a -> a
abs a
x Bool -> Bool -> Bool
&& a -> a
forall a. Num a => a -> a
abs a
x a -> a -> Bool
forall a. Ord a => a -> a -> Bool
< 1e7) = RoundingMode -> Maybe Int -> a -> ShowS
forall a. RealFloat a => RoundingMode -> Maybe Int -> a -> ShowS
showFFloatRn RoundingMode
r Maybe Int
mprec a
x
| Bool
otherwise = RoundingMode -> Maybe Int -> a -> ShowS
forall a. RealFloat a => RoundingMode -> Maybe Int -> a -> ShowS
showEFloatRn RoundingMode
r Maybe Int
mprec a
x
{-# SPECIALIZE showGFloatRn :: RoundingMode -> Maybe Int -> Double -> ShowS #-}